Munshi Nagar, Andhers (W) Mumbai - 4
END SEMESTER EXAMINATION JULY 2023

Program: B. Tech Second Year Mechanical Course Code: PC-BTM406

Course Name: Material Science

Duration: 03 Hrs
Maximum Points: 100
Semester: IV

1. Question no 1 is compulsory
2. Attempt any four questions from the remaining six questions.
3. If necessary assume suitable data with justification
4. Draw neatly labeled sketches wherever required.

END SEMESTER EXAMINATION JULY 2023
from liquid?
B. What is the composition of the last solid formed at the end of the solidification process?
C. What is the amount of solid and liquid at $1340^{\circ} \mathrm{C}$?

Weight $\%$ Ni	20	40	60	80
Liqudus temp. C	1200	1275	1345	1440
Solidus Temp	1165	1235	1310	1380

Determine the Miller indices for the directions and the planes

31 shown in the following unit cell:[Note: provide the stepuize valulations for the given problem]

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai- +
END SEMESTER EXAMINATION JULY 2023

SARDAR PATEL COLLEGE OF ENGINEERING

(Ginvernment Aided Aurnnomous Institute)
Munshi Nagar, Andheri (W) Mumbai - +
END SEMESTER EXAMINATION JULY 2023

5A	Write the effect of alloying elements on the properties of materials when they are added to the material composition. 1. Nickel 2. Molybdenum 3. Vanadium 4. Cobalt 5. lead	06	4		2.2.1
5B	Detine nanomaterials and elaborate on the top-down and bottomup approaches used in their synthesis.	06	4	4	4.2.2
5C	Explain the concepts of quenching and martensite in the context of materials science, and how the Time-Temperature-Transformation (TTT) diagram is utilized to understand these processes. Furthermore, elucidate the mechanism by which heat is extracted from a component when liquid quenching media are employed.	08	4	2,6	2.2.2
6A	Classify composites based on the form of reinforcement and provide a detailed explanation of fibrous composite materials. Additionally, discuss why mechanical properties are significantly improved at the micro scale compared to the macro scale.	08	4	4	4.2.2
6B	Write a composition of the following materials and their application. 1. yellow metal 2. Nickel gun-metal 3. Dow metal	06	3,4	3	3.2.1
6C	Discuss the reasons for the increasing demand of ceramic materials in engineering applications. Classify ceramic materials and list their properties.	06	4	3	3.2.3
7A	Determine the tensile stress that is applied along the [$1 \overline{1} 0$] axis of a silver crystal to cause slip on the ($1 \overline{1} \overline{1}$) [$0 \overline{1} 1]$ system. The critical resolved shear stress is 6 MPa .Also draw cubic crystals showing, slip plane and slip direction.	08	2,3	4	3.8.1
7B	Discuss the recycling issue in the materials. Discuss how materials engineering can play a role in "green design."	07	1,4	6	3.4.2
7 C	Explain why diamond remains stable at room temperature and does not undergo a transformation to graphite, despite graphite being an unstable phase of carbon at room temperature. Support your explanation with a suitable diagram.	05	2	5	3.2.1

END SEMESTER EXAMINATION, JULY 2023

PROGRAM: SY B.Tech. (Mechanical), Semester-IV COURSE: PE-BTM403-Fluid Mechanics

Total points: 100
Duration: 3 HOURS

Note:

- Answer any 5 questions. Each question carries 20 points
- Answer should be question specific and to the point.
- All component of a question must be answered togather.
- Data in the last column represents course outcome and Blooms Taxonomy of respective question

Q1. What ' is boundary layer? Explain the concept with the help of flow over a flat plate. How $10 \quad 5 / 2.3$
(A) does it effect the motion of a moving of an object in a fluid medium? Is it possible to measure the thick. - ass of a boundary layer? Illustrate your answer with sufficient examples.
(B) A vessel of the shape shown in the following figure is filled with liquid in c.. -cavity 0.92 . The pressure gauge of specific 5 . $\mathrm{kN} / \mathrm{m} 2$. Determine gauge at A reads 40 u
a) the pressure read by gauge located at B.
b) the magnitude and location of the force acting on the left wall of the vessel for per unit
of its depth.
Q2. What is Newton
(A) Newtonian Fluids? Classify and characterentiate between the Newtonian and Non-

(B) A test tube is spun in a centrifuge. The tube support is mounted on a pivot so that the tube swings outward as rotation speed increases. At high speeds, the tube is
nearly horizontal. Find
nearly horizontal. Find
(a) an expression for the radial component of acceleration of a liquid element located
at radius r ,
(b) the radial pressure gradient $\mathrm{dp} / \mathrm{dr}$, and
(c) the required angular
(b) the radial pressure gradient $\mathrm{dp} / \mathrm{dr}$, and
(c) the required angular velocity to generate a pressure of 250 MPa in the bottom of a

Q3. Derive differential form
(A) continuity equation for steady state incompressible flow. Contimplify it to obtain a
(B) The velocity profile of action.
(B) The velocity profile of a devil 10
(The free surface and water,
(The free surface and bottom radii are 50 and 30 me . 250 MPa in the bottom of a R is given by

$$
u=-\frac{1}{4 \mu} \frac{d p}{d x}\left(1-\frac{r^{2}}{R^{2}}\right)
$$

Q4. Consider a Venturimeter whin inlet and throat
(A) dianeter A and A as shown.

Drive the following expression to evaluate the flow rate.

$$
2-\frac{A_{1} f_{2}}{\sqrt{4_{2}^{2}-A_{2}^{2}}} \sqrt{2_{g}\left(\rho_{m} \rho-1\right) \Delta h}
$$

Where. ρ is the density of the flowing fluid, and $\rho_{5 n}$ is the density of the manometric fluid.

(B) A 45 degree reducing pipe bend in a horizontal plane, tapers from 600 mm diameter to at the inlet to 300 mm at the outlet. The pressure at the inlet is 140 kPa gauge and the rate of flow of water through the bend is $0.425 \mathrm{~m}^{3} / \mathrm{s}$. Neglecting friction, calculate the net resuitant horizontal force exerted by the water on the bend, Assume uniform conditions with straight and paraliel streamlines at iniet and outlet and the fluid to be frictionless.
Consider a little different situation where pipe bend is on a piane normal to the ground. Will the resuitant force acting on bend be same? Recommend a cost effective bend arrangement with juscification.
Q3. Explain your understanding about following points.
(E) Using the nesgal momentum equation datemme the expression for the following amos thatabutyprofile

$$
\frac{u}{v}=2 \frac{y}{\delta}-\left(\frac{y}{b}\right)^{2} \text { where } U \text { is free stream valocity }
$$

7) the dienlacement and womentum thickesses and atorpret the resut
b) the boundary layer skin friction coefficient

Q6 Waths ouete fow? Mention all assumprions and derive an expression for developed
(A) laminar volocty profle for the fow.
(B) A wate used as a siphon to discharge an oli of spectic gravity 0.8 from a large open vessel intc a drain at atmospheric pressure as shown in the figure, Analyse and calculate,
a) The velocity of oll through the siphon,
b) The pressure at point A and B,
d) The pressure at the highest point C
d) The maximum height of the C chat can be accommodated above the level in the vessel

e) The maximum verticai depth of the right limb of the siphon
(Take the vapour pressure of the liquid at the working temperature to be 29.5 kPa and P_{at} $=101 \mathrm{kPa}$

Q7. Differeatiate between
(A) a) Streaminia and Streakline
b) Lagrangian and Eulertan approant
a) Reynod number and Mach Number
d) fregrac ibferencial appoan of fow analys:

END-SEMESTER EXAMINATION

Program: B. Tech. in Mechanical Engineering Semi Course Code: PC-BTM415

Course Name: Solid Mechanics

Notes:

1. Question no. 1 is compulsory, solve any 4 of the remaining 6 questions.
2. ' a ' is the single last digit (0 to 9) of the student's registration number in questions marked with *.
3. Refer Annexure I for additional information. Assume suitable data if necessary.

\begin{tabular}{|c|c|c|c|c|c|}
\hline \& Consider \(\quad E_{\text {steel }}=200 \mathrm{CPa}, v_{\text {steel }}=0.3, E_{C u}=115 \mathrm{GPa}, v_{C u}=\) 0.33. Determine the following: (i) the width of the contact area, (ii) the max. contact pressure, (iii) the principal stresses at the contact. \& \& \& \& \\
\hline Q3 \& \begin{tabular}{l}
A) * An object \(M\) of 20 kg mass is released from rest in the position shown in the figure and it is stopped by a cover plate attached at end A of the vertical rod \(A B C\) which is fixed at end C. Section \(A B\) is of \((5+a)\) mm diameter and section \(B C\) is of \((10+a) \mathrm{mm}\) diameter. \(E=200\) GPa . Determine the instantaneous stresses in the rod. \\
B) * A thick-walled steel tube has an internal radius of \((100+a) \mathrm{mm}\) and tube wall thickness is \((10+a) \mathrm{mm}\). It is subjected to internal pressure of 25 MPa and external pressure of 3 MPa . Consider the tensile sirength of steet as 400 MPa . \\
- Determine the factor of safety as per Maximum Principal stress theory of failure. \\
- If \(E=200 \mathrm{GPa}\) and \(v=0.3\), determine the changes in the internal radius of the tube due to the pressure loading.
\end{tabular} \& (10) \& \begin{tabular}{c}
4 \\
3 \\
3 \\
\\
\\
\\
\\
\\
\\
\hline
\end{tabular} \& 3

3 \& ${ }_{6}^{6}$

\hline Q4 \& | A) Figure shows an infinitesinally small cienent around plane a. The plane has its nomal vector as \bar{n} and the traction vector on the plane is $\overline{T^{n}}$ The itress state at rie location is represented by the stress matrix $\left[\tau_{i j}\right]$. The body force on the element per urit volume is y_{x}. Derive the Cauchy's equation for the traction component T_{x}^{n}. |
| :--- |
| B) (i) Discuss three modes of fracture. (ii) Figure shows a metal plate of thickness B -20 mm which is used for clamping purpose (all dimensions in mm). Find safe load P in the presence of a cracic in the frame at location shown. |
| Material data: $K_{c c}=67 \mathrm{MPa} \sqrt{\mathrm{m}}$. |
| C) Discuss the principle of supermposition. Prove the uniqueness theorem for elastic bodies using the principle of superimposition. | \& (5)

(10)

(5) \& 2 \& 4

3

4 \&

\hline
\end{tabular}

Q5	A) Derive the following differential equations of equilibrium. $\frac{\partial \tau_{x z}}{\partial x}+\frac{\partial \tau_{y z}}{\partial y}+\frac{\partial \sigma_{z}}{\partial z}+\gamma_{z}=0$ B) Explain the following topics in solid mechanics: (i) measurement of strain using strain gauges, (ii) physical interpretation of the compatibility equations. C) * A steel disk of $(730+a) \mathrm{mm}$ diameter is shrink fitted on a steel shaft of $(90+a) \mathrm{mm}$ diameter. If the shaft is rotating at 5200 rpm , find the minimum required interference between shaft and disk such that disk will not separate from the shaft. Also calculate the maximum tangential stress in the disk at above speed. Consider $\mathrm{E}=200 \mathrm{GPa}_{2} v=0.3$ and density $=7850 \mathrm{~kg} / \mathrm{m}^{3}$.	(5) (5) (10)	3 3 2	4 2 3	2 4
Q6	A) Briefly discuss following terms: (i) Cauchy's strain-displacement equations, (ii) principal strain planes, (iii) strain invariants. B) Discuss the significance of generalized Hooke's law in solid mechanics. Describe its form for isotropic and orthotropic materials. C) * A thin-walled rectangular box section has the mean width ($32+a)$ mm and height $(16+a) \mathrm{mm}$. The wall thickness is 2 mm along width and 1 mm along height. It is subjected to torque of 35 Nm . Calculate the shear stress in the wall and the angle of twist. $\mathrm{G}=80 \mathrm{GPa}$. D) Discuss the applications of metal plasticity in engineering. Describe the Bauschinger effect with the help of load-displacement diagram.	(5) (5) (5) (5)	2 3	2 2 3	2 3 5
Q7	A) Explain the following: (i) True stress and strain versus Engineering stress and strain, (ii) concept of the stress as a tensor quantity. B) (i) Give a few examples from real life about axisymmetric bodies subjected to axisymmetric and non-axisymmetric loading (ii) Derive an expression for circumferential strain ϵ_{θ} in axisymmetric bodies subjected to axisymmetric loading. C) Give a few examples of thermoelastic problems. Explain how temperature loading is accounted for in the stress-strain relationship in thermoelastic problems. Obtain the stresses for a case wherein a fully constrained solid is uniformly heated. D) Briefly discuss the following topics: (i) resilience, (ii) proof resilience, (iii) strain energy, (iv) strain energy density, (v) difference between the stresses induced due to static and impact loading.	(5) (5) (5) (5)	1 3 2	2 3 3	1 4 5 5

Stresses in thick pressurized cylinders

$$
\begin{aligned}
& \sigma_{r}=\frac{p_{a} a^{2}-p_{b} b^{2}}{b^{2}-a^{2}}-\frac{a^{2} b^{2}}{r^{2}} \times \frac{p_{a}-p_{b}}{b^{2}-a^{2}} \\
& \sigma_{\theta}=\frac{p_{a} a^{2}-p_{b} b^{2}}{b^{2}-a^{2}}+\frac{a^{2} b^{2}}{r^{2}} \times \frac{p_{a}-p_{b}}{b^{2}-a^{2}} \\
& \sigma_{z}=0 \text { with both ends open } \\
& \sigma_{z}=v\left(\sigma_{r}+\sigma_{\theta}\right) \text { with both ends closed }
\end{aligned}
$$

Stresses in rotating solid disks

$$
\begin{aligned}
& \sigma_{r}=\frac{3+v}{8} \rho \omega^{2}\left(b^{2}-r^{2}\right) \\
& \sigma_{\theta}=\frac{3+v}{8} \rho \omega^{2} b^{2}-\frac{1+3 v}{8} \rho \omega^{2} r^{2}
\end{aligned}
$$

Stresses in rotating disks with central hole

$$
\begin{aligned}
& \sigma_{r}=\frac{3+v}{8} \rho \omega^{2}\left(b^{2}+a^{2}-\frac{a^{2} b^{2}}{r^{2}}-r^{2}\right) \\
& \sigma_{\theta}=\frac{3+v}{8} \rho \omega^{2}\left(b^{2}+a^{2}+\frac{a^{2} b^{2}}{r^{2}}-\frac{1+3 v}{3+v} r^{2}\right)
\end{aligned}
$$

Stresses for two cylinders in contact with each other
$b=\sqrt{\frac{2 F}{\pi l}\left[\frac{\frac{\left(1-v_{2}^{2}\right)}{E_{2}}+\frac{\left(1-v_{2}^{2}\right)}{E_{2}}}{\frac{1}{d_{1}}+\frac{1}{d_{2}}}\right]}$
$p_{\max }=\frac{2}{\pi} \frac{F}{b l}$
$\sigma_{x}=-2 v p_{\max }\left[\sqrt{\left(1+\frac{z^{2}}{b^{2}}\right)}-\frac{z}{b}\right]$
$\sigma_{y}=-p_{\max }\left[\left(2-\frac{1}{1+z^{2} / b^{2}}\right) \sqrt{1+z^{2} / b^{2}}-2 \frac{z}{b}\right]$
$\sigma_{z}=-p_{\max }\left[\frac{1}{\sqrt{1+z^{2} / b^{2}}}\right]$
SIF for edge cracked plate subjected to axial load $P /$ bending moment M
$\left(K_{I}\right)_{P}=\frac{P}{B h} \sqrt{\pi a} Y_{P} ;\left(K_{I}\right)_{M}=\frac{6 M}{B h^{2}} \sqrt{\pi a} Y_{M}$
$\alpha=a / h$
$Y_{\mathrm{p}}=1.12-0.23 \alpha+10.55 \alpha^{2}-21.72 \alpha^{3}+30.39 \alpha^{4}$ $Y_{M}=1.122-1.4 \alpha+7.33 \alpha^{2}-13.08 \alpha^{3}+14 \alpha^{4}$

End Semester - July 2023 Examinations

Program: S.Y.B. Tech. (Mechanical Engineering)
Course Code: PC-BTM404
Course Name: Mechanical Engineering Measurement

Notes:

1. Question number 1 and 2 are compulsory
2. Solve any 3 questions from question number 3 to 7
3. If necessary assume suitable data with justification
4. Draw neat labeled sketches wherever required.

Duration: 03 Hrs
Maximum Points: 100
Semester: IV

\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
2
\] \& Questions \& Points \& CO \& BL \& M.N. \\
\hline 1 \& \begin{tabular}{l}
Following table list the measuring instruments (left hand side column of the table) for measuring mechanical properties (right hand side column of the table) of the system. Students shall match the measuring instrument with the corresponding mechanical property. \\
Further student shall explain only the working principle of the measurement instrument listed on left hand side column of the table with neat sketch. (Note: Credits will be given only if match is perfect)
\end{tabular} \& 05

15 \& 1,2,3 \& 4 \& 2 to 7

\hline \[
$$
\begin{gathered}
2 \\
(\mathrm{~A})
\end{gathered}
$$

\] \& | The discharge coefficient C_{d} of an orifice can be found by collecting the water that flows through during a time interval when it is under a constant head h. The formula is $C_{d}=\frac{W}{t \rho A \sqrt{2 g h}}$ |
| :--- |
| Find C_{d} and its possible error if: $W=390 \pm 0.25 \mathrm{~kg}, \mathrm{t}=600 \pm 2 \mathrm{~s}, \mathrm{~d}=12 \pm 0.03$ $\mathrm{mm}, \rho=1050 \pm 0.1 \% \mathrm{~kg} / \mathrm{m}^{3} ; \mathrm{A}=\pi \mathrm{d}^{2} / 4, \mathrm{~h}=3.6 \pm 0.03 \mathrm{~m}, \mathrm{~g}=9.81 \pm 0.1 \% \mathrm{~m} / \mathrm{s}^{2}$ | \& 10 \& 3,4 \& 4 \& 6

\hline $$
\begin{gathered}
2 \\
(\mathrm{~B})
\end{gathered}
$$ \& The speed of a shaft rotating at 2880 rpm is measured using stroboscope. The stroboscope dial is slowly turned within flashing rates of 96 to 24 per second. Indicate the flash rate setting which give single, double steady images. \& 10 \& 1,3 \& 4 \& 3,4

\hline $$
\begin{gathered}
3 \\
(\mathrm{~A})
\end{gathered}
$$ \& It is proposed to develop measurement and control system for maintaining flow rate and pressure of water in reaction type hydraulic turbine for operating to its best efficiency point. Proposed design aimed to retrieved \& 10 \& 3,4 \& 5 \& 4,5,6

\hline
\end{tabular}

End Semester - July 2023 Examinations

	data from system and controlled it remotely using internet network system. Students are instructed to present architecture of such network integrated measurement and control system (explain with neat schematic diagram).				
$\begin{gathered} 3 \\ (\mathrm{~B}) \end{gathered}$	A system is given by differential equation $\frac{d^{2} y}{d t^{2}}+4 \frac{d y}{d t}+8 y=8 x$ where $\mathrm{y}=$ output and $\mathrm{x}=$ Input. Determine all time domain specifications for unit step input.	10	1	4	2
4(A)	A single strain gauge having resistance of 130Ω is mounted on a steel cantilever beam at a distance 0.12 m from the free end. The beam dimensions are 25 cm (length) $\times 2.0 \mathrm{~cm}$ (width) $\times 0.3 \mathrm{~cm}$ (depth). An unknown force F applied at the free end produces a deflection of 11.8 mm of the free end. If the changes in gauge resistance is found to be 0.145Ω, calculate the gauge factor. Deflection of the free end $\delta=\mathrm{FL}^{3} / 3 \mathrm{EI}$, where $\mathrm{F}=$ Force, $\mathrm{L}=$ Length, $\mathrm{E}=$ Youngs modulus, $\mathrm{I}=$ Moment of Inertia, Take Young's modulus for steel as $200 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}$	10	3,4	4	-)
$\begin{gathered} 4 \\ \text { (B) } \end{gathered}$	Explain working principle of Mcleod gauge with neat diagram. A Mcleod gauge has volume of bulb and measuring capillary equal to $110 \times 10^{-6} \mathrm{~m}^{3}$ and measuring capillary diameter of 1.1 mm . (i) Calculate the pressure indicated when the reading of measuring capillary is 28 mm in case approximate formula is used. What is the error if the exact formula is used for pressure measurement?	10	2,3	3	4,5
$\begin{gathered} 5 \\ (\mathrm{~A}) \end{gathered}$	A bubbler or purge method is used to measure the water level. Air compressor having pressure range of $0-5$ bar is used for the measurement of the water level. Air tube with opening at the bottom of the tank is used to purge the air in the water tank. Operator initially purge the 3 bar pressure in the air tube and no air bubbles are observed. The pressure is varied to maximum rating of 5 bar although no air bubble is observed. In fact at the setting of 5 bar pressure the water rises into the air tube up to 5 meters measured from bottom of the tank. Estimate the water level in the tank from the different observations provided.	10	1,2,3	3	,
5 (B)	Following are the different applications/systems/processes wherein the temperature measurement is essential; (i) Microwave oven (ii) Temperature of human beings entering institute campus under COVID-19 pandemic situation. Students shall select the appropriate temperature measuring system for the above applications with justification and also explain their working principle with neat labelled sketches. (Note: Points will be assigned to explanation only if selection of system is appropriate).	10	4	6	6

End Semester - July 2023 Examinations

(Government Aided Autonomous Institute)

Munshi Nagar, Andheri (W) Mumbai - 400058
END SEM EXAMINATIONS (Even SEM) July 2023

Program:
Course Code: PC-BTM412
Course Name: Kinematics of Machinery
Notes:

Duration: 3.00 hr
Maximum Points: 100
Semester: IV

1. Question number ONE is compulsory solve any four out of remaining six
2. Question nos. one, two and three should be solved on drawing sheet.
3. Answers to each sub-questions are grouped together
4. Use of scientific calculator is allowed
5. Begin answer to each question on new page.
6. Candidates should write the answer legibly

Q.No.	Questions	Pts	Cos	BL	PI
1	a) A crank-rocker linkage has a 100 mm frame, a 25 mm crank, a 75 mm coupler and a 90 mm rocker. For the given mechanism find the angular velocity and angular acceleration of coupler and follower, for the configuration of minimum and maximum transmission angle.(Use IC method for velocity analysis and relative method for acceleration analysis.) Take uniform angular velocity of crank as $\omega=10 \mathrm{rad} / \mathrm{sec}$ (ccw).	20	1,3	3,4	$\begin{aligned} & 2.3 . \\ & 1 \end{aligned}$
4	a) A crank-rocker linkage has a 100 mm frame, a 25 mm crank, a 90 mm coupler and a 75 mm rocker. For the given mechanism find the minimum and maximum transmission angle. Sketch both the toggle position and find corresponding crank angles and transmission angles. (Solve graphically). b) Crank 2 of the system shown in fig. has speed of $60 \mathrm{rev} / \mathrm{min} \mathrm{ccw}$. derive the expression and calculate the angular velocity and angular acceleration of link 4. (Use analytical complex algebra method). $\mathrm{O}_{2} \mathrm{O}_{4}=300$ $\mathrm{mm}, \mathrm{AO}_{2}=175 \mathrm{~mm}, \mathrm{BO}_{4}=$ 700 mm .	10 10	1,3	3,4	$\begin{aligned} & 2.3 \\ & 1 \end{aligned}$

3	A camm, with a minimum raduus of 50 mm , rotating clockwise at a uniform speed, is required to give a knife edge follower the motion as described below: a) To move outwards through 50 mm during 120° rotation of the cam b) To dwell for next 60° c) To return to its starting position during next $90^{\circ} \mathrm{d}$) To dwell for the rest period of a revolution i.e. 90°. Draw the profile of the cam, when the line of stroke of the follower passes through the center of the cam shaft, the displacement of the follower is to take place with UARM during outward movement and SHM during inward movement Determine the maximum velocity and acceleration of the follower when the cam shaft rotates at 900 r.p.m. Also draw the displacement, velocity and acceleration diagrams for one complete revolution of the cam.	20	3,1	3	${ }_{1}^{2.3}$
4	a) Define the following terms, illustrating with sketches where possible, element or link, lower pair, higher pair, kinematic chain. b) Describe with neat sketch a quick return motion mechanism (slotted lever-crank) suitable for shaping machine. Show how the ratio of time taken for the two strokes is determined? c) Sketch the Davis steering gear mechanism and show that it satisfies the required condition for correct steering. d) Explain the meaning of the following terms: circular pitch, diametral pitch, module, pressure angle. Illustrate with sketches where possible.	4×5	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	2,3	2.4
5	a) Deduce the expression for minimum number of teeth on gear wheel. b) A $6 \mathrm{~mm} /$ tooth module, 24 -tooth pinion is to drive a 36 -tooth gear. The gears are cut on the 20° full-depth involute system. Find and tabulate the addendum, dedendum, circular pitch, base pitch, base circle radii, length of path of approach and recess, and contact ratio. Also angle of action for pinion and wheel.	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	4	3	$\begin{array}{\|l\|} \hline 2.3 . \\ 1 \end{array}$
6	a) A spur gears with 9 and 36 teeth are to be cut with 20° full-depth cutter with module of 8 mm . i. Determine the amount that the addendum of the gear must be decreased in order to avoid the interference. ii. If the addendum of the pinion is increased by the same amount, determine the contact ratio. b) What is interference in gear? How it is avoided? c) State the advantages of gear drive over the belt drive.	10	4	4	$\begin{aligned} & 2.2 \\ & 3 \end{aligned}$
7	a) State the conditions for straight line generating mechanism. Sketch the Peaucellier mechanism and prove that the tracing point ' P ' describes the straight line. b) A driving shaft of a Hooke's joint rotates at a uniform speed of 400 rpm . If the maximum variation in the driven shaft is $\pm 5 \%$ of the mean speed, determine the greatest permissible angle between the axes of the shafts. What are the maximum and minimum speeds of the driven shaft?	10	2,3	3	2.3

END SEMESTER EXAMINATION - JULY 2023

Program: S.Y.B.Tech (Mechanical)

 Course Code: BS-BTM401
 Course Name: Statistics Probability Hypothesis Testing \& V ed

Semester: IV

Note:

1. Attempt Any Five Questions.

2. Answers to the sub questions should be grouped together.

END SEMESTER EXAMINATION - JULY 2023

SARDAR PATEL COLIEGE OF ENGINEERING

(Government Aided Autonomous Institute)
Munshi Nagar, Andheri (W) Mumbai-400058

END SEMESTER EXAMINATION - JULY 2023

5	5	Find constant k such that the function $f(x)= \begin{cases}k\left(1-x^{2}\right), & \text { if } 0 \leq x \leq 1 \\ 0 & \text { elsewhere }\end{cases}$ is the probability density function. Also find $P(0.1 \leq X \leq 0.2)$ and $P(X \geq 0.5)$					CO	Bla,s		5
	b	The S.D of a random sample of 1000 is found to be with 2.6 and the S.D of another random sample of 500 is 2.7 . Assuming the samples to be independent, find whether the two samples could have come from population with the same S.D?				6	COI	BL4		4
	c	Verify Gauss Divergence Theorem for $\bar{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-x z\right) j+\left(z^{2}-x y\right) k$ over the surface of the cuboid $0 \leq x \leq a, 0 \leq y \leq b, 0 \leq z \leq c$				8	C02	BL2,		
6	a	Certain pesticide is packed into bags by a machine. A random sample of 10 bags is drawn and their contents are found to weigh (in kg) as follows $50,49,52,44,45,48,46,45,49,45$ Test if average packing can be taken to be 50 kg at 5% LOS.				6	COI	BL5	4	
	b	The coefficient of rank correlation between marks in two subjects obtained by a group of students is 0.8 . If the sum of squares of the differences in ranks is 33 . Find the number of students in the group.				6	CO1	BL3	6	
	c	For normal distribution 30\% items are below 45 and 8% items are above 64 . Find the mean and variance of the normal distribution				8	CO1	$\begin{aligned} & \text { BL3, } \\ & \text { BLS } \end{aligned}$	2	
7	a	Two random sample gave the following data				6	C01	$\begin{aligned} & \mathrm{BL2} 2, \\ & \mathrm{BLL} \end{aligned}$	1	
		Sample No	Size		Variance					
		1	1000	67.42	2.58					
		2	1200	67.25	2.5					
		Is the difference between standard deviation significant?								

Bharativa Vidya Bhavan's
SARDAR PATEL COLLEGE OF ENGINEERING
(Government Aided Autonomous Institute)
Munslii Nagar, Andheri (W) Mumbai-400058
END SEMESTER EXAMINATION - JULY 2023

b Use Euler's method to find approximate value of y at $x=2$ (Correct to four decimal places). Given that $\frac{d y}{d x}=2+\sqrt{x y} ; y(1)=1$. Take $h=0.2$													6	C03	BL5	7
c	300 digits were chosen at random from a table of random numbers. The frequency of digits are as follows												8	CO1	BLI, BL3	2
	Digit	0	1	2	3	4	5	6	7	8	9	Total				
	Frequency	28	29	33	31	26	35	32	30	31	25	300				
	Using χ^{2}-test examine the hypothesis that the digits were distributed in equal numbers in the table															

Chi-Scuare (x^{2}) Olsmibuttion

Degrees of fietelun:	Area to the Right of Critical Value									
	0.005	0.09	0.975	0.95	0.90	0.10	0.05	0.025	0.01	
1			0.001	0.004	0.016	2.706	3.841			
2	0.010	0.020	0.051	0.103	0.211	4.605	3.841 5.991	5024		7
3	0.072	0.115	0.216	0.352	0.584	6.251	7.815	9.378	9.219	10
4	0.207	0.297	0.484	0.711	1.064	7.779	9.488	11.143	13.347	12
5	0.412	0.554	0.831	1.145	1.610	9.236	11.071	12.833	15.086	14
6	0.676	0.872	1.237	1.635	2.204	10.645	12.592	14.449	16.812	
8	0.989	1.239	1.690	2.167	2.833	12.017	14.067	16.013	18.475	18
8	1344	1.646	2.180	2.733	3.490	13.362	15.507	17.535	20.090	20
9	1735	2.088	2.700	3.325	4.168	14.684	16.919	19.023	21.666	21.
10	2.156	2.558	3.247	3.940	4.865	15.987	18.307	20.483	$\begin{aligned} & 21.666 \\ & 23.200 \end{aligned}$	23.
11	2.603	3.053	3.816	4.575	5.578	17.275				25.
12	3.074	3.571	4.404	5.226	6.304	18.549	21.026	$\begin{aligned} & 21.920 \\ & 23.337 \end{aligned}$	24.725	26.
13	3.565	4.107	5.009	5.892	7.042	18.812	21.026 22.362	23.337	26.217	28.
14	4.075	4.660	5.629	6.571	7.790	21.064	23.685	26.119	27.688 29.141	29.8
15	4.501	5.229	6.262	7.261	8.547	22.307	24.996	27.488	29.141 30.578	31.3
16	5.142	5.812	6.908	7.962	9.312	23.542	26.296	28.845	32.000	2.
18	5.597	6.408	7.564	8.672	10.085	24.769	27.587	30.191	33.409	4.2
19	0.844	7.015	8.231	9.390	10.865	25.989	28.869	31.526	34.805	1
20	7.434	7.633 8.260	8.907 9.591	10.117	11.651	27.204	30.144	32.852	36.191	37.1 38.5
21	8.034	8.897		10.851	12.443	28.412	31.410	34.170	37.566	39.9
22	8.643	9.542	10.982	11.591 12.338	$\begin{aligned} & 13.240 \\ & 14.042 \end{aligned}$	29.615	32.671	35.479	38.932	41.4
23	9.260	10.196	11.689	13.091	14.042	30.813 32.007	33.924 35.172	36.781	40.289	42.71
24	9.886	10.856	12.401	13.848	14.848	32.007 33.196	35.172	38.076	41.638	44.12
25	10.520	11.524	13.120	14.611	15.473	33.196 34.382	36.415 37 ra	39.364 40 KAK	42.980	45.5:
20	11.160	12.198	13.844	15.379	17.292					
27 28	11.808	12.879	14.573	16.151	18.114	36.741	38.885 40.113	41.923 43.194	45.542	48.25
29	12.461 13.121	13.565	15.308	16.928	18.939	37.916	41.337	44.461	48.278	49.64
30	13.787	14.257	16.047	17.708	19.768	39.087	42.557	45.72 ?	49.588	52.33
	20.707	22164		$18+93$	20.599	40.256	43.713	46.974	50.89 ?	53.67
	27.991	29.707	32.453	26.509	29.051	51.805	55.758	59.342	63.691	55.5
	35.534	37.485	40.482	43.764 43.188	37.689	63.167	67.505	71.420	76.154	79.49
	43.275	45.442	48.758		+ 46.459	74.397	79.082	83.298	88.370	0105
	51.172	53.540	57.153	60391	55.329 64.278	85.527	90.531	95.023	100.423	11421
	59.196	61.754				36.578	101.879	106.62	112.32.	116.32
	67.328	70.065	74.222	77.929	73.291	107.565	113.145	118.135	124.116	28.298
						118.498	124.342	129.561	135.807	140.16 t

Table of the Student's t-distribution

The tabie gives the values of $t_{\text {aji }}$ where $\operatorname{Pr}\left(f_{v}>f_{\text {av }}\right) \sim \alpha$, wihh \vee degrees of freston

	0.1	0.05	0.025	0.01	0.005	0.001	0.0005
1	3.078	6.314	12.076	31.821	63.657	318.310	636.620
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.350	t.782	2.179	2.681	3.055	3.930	4.316
13	1.350	1.771	2160	2.650	3.012	3.852	4.227
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
12	1.337	1.746	2.120	2.583	2.924	3.606	4.015
8	1.333	\% 740	2110	2.567	2.898	3.646	3.955
18	1.330	:,734	2.101	2.552	2.878	3.610	3.922
19	1.325	1.729	2.053	2.539	2.861	3.579	3.863
20	1.325	4.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2797	3.467	3.745
25	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	1.314	1.703	2.052	2.473	2.771	3.421	3.650
28	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	4.311	1.699	2.045	2.462	2.756	3.396	3.659
30	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	1.296	1.671	2.000	2.390	2.660	3.232	3.460
120	1.289	1.658	1.980	2.358	2.617	3.160	3.373
\pm	1.282	1.645	1.950	2.320	2.576	3.050	3.291

Standard Normal Distribution Table

2	. 00	. 01	. 02	. 03	. 04	. 05	. 06	. 07	. 08	. 09
0.0	. 0000	. 0040	. 0080	. 0120	. 0160	. 0199	. 0239	. 0279	. 0319	0359
0.1	. 0398	. 0438	. 0	. 0517	. 055	. 0596	. 0636	0675	. 0714	. 0753
0.2	. 0793	. 0832	. 087	. 0910	. 0948	. 0987	. 1026	. 1064	. 1103	1141
0.3	. 1179	. 1217	. 1255	. 1293	. 1331	. 1368	. 1406	. 1443	1480	1517
0.4	. 1554	. 1591	. 1628	. 1664	. 1700	. 1736	. 1772	. 1808	. 1844	1879
0.5	. 1915	. 1950	. 1985	. 2019	. 2054	. 2088	. 2123	. 2157	. 2190	. 2224
0.6	. 22	. 2	. 2	. 23	. 2389	. 242	. 2454	. 2486	. 2517	. 2549
0.	. 2580	. 2	. 2642	. 2673	. 2704	. 2734	. 2764	. 2794	. 2823	. 2852
0.8	. 2881	. 2910	. 2939	. 2967	. 2995	. 3023	. 3051	. 3078	. 3106	. 3133
0.9	. 3159	. 3186	. 3212	. 3238	. 3264	. 3289	. 3315	. 3340	. 3365	. 3389
1.0	. 3413	. 3438	. 3461	. 3	. 35	. 35	. 3554	. 3577	. 3599	. 3621
1.	. 3	. 36	. 368	. 3708	. 3729	. 3749	. 3770	. 3790	. 3810	. 3830
1.2	. 3849	. 3869	. 3888	. 3907	. 3925	. 3944	. 3962	. 3980	. 3997	4015
1.3	. 4032	. 4049	. 4066	. 4082	. 4099	. 4115	. 4131	. 4147	. 4162	. 4177
1.4	. 4192	. 4207	. 4222	. 4236	. 4251	. 4265	. 4279	. 4292	. 4306	. 4319
1.5	. 4332	. 4345	. 435	. 4370	. 4382	. 4394	. 4406	. 4418	. 4429	. 4441
1.6	. 4452	. 4	. 4	. 4484	. 4495	. 4505	. 4515	,	4535	545
1.	. 4554	. 4564	. 4	. 4582	. 4591	. 4599	. 4608	. 4616	. 4625	. 4633
1.8	. 4641	. 4649	. 4656	. 4664	. 4671	. 4678	. 4686	. 4693	. 4699	. 4706
1.9	. 4713	. 4719	. 4726	. 4732	. 4738	. 4	. 4750	. 4756	. 4761	. 4767
2.0	. 4772	. 4778	. 4783	. 4788	. 4793	. 47	. 4803	. 4808	. 4812	. 4817
2.	. 48	. 4826	. 4830	. 4838	. 4838	. 4842	46	50	5	857
2.2	. 4861	. 4864	. 4868	. 4	. 4875	. 4878	. 4881	. 4884	. 4887	. 4890
2.3	. 4893	. 4896	. 4898	. 4	. 4904	. 4906	. 4909	. 4911	. 4913	. 4916
2.4	. 4918	. 4920	. 4922	. 4925	. 4927	. 4929	. 4931	. 4932	. 4934	. 4936
2.5	. 4938	. 4940	. 4941	. 4943	. 4945	. 4946	. 4948	. 4949	. 4951	. 4952
2.6	. 4953	. 4955	. 4956	. 4957	. 4959	. 4960	. 4961	62	63	. 4964
2.7	. 4965	. 4966	. 4967	. 4968	. 4969	. 4970	. 4971	. 4972	. 4973	. 4974
2.8	. 4974	. 4975	. 4976	. 4	. 4977	. 4978	. 4979	. 4979	. 4980	. 4981
2.	. 4981	. 4982	. 4982	. 4983	. 4984	. 4984	. 4985	. 4985	. 4986	. 4986
3.0	-4987	. 4987	-4987	. 4988	. 4988	4989	-4989	. 4989	. 4990	- 4990
. 1	. 4990	. 4991	. 4991	. 4991	92	92	992	92	4993	4993
3.2	. 4993	. 4993	. 4994	. 4994	. 4994	. 4994	. 4994	. 4995	. 4995	. 4995
3.3	. 4995	. 4995	. 4995	. 4996	. 4996	. 4996	. 4996	. 4996	. 4996	. 4997
3.4	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4997	. 4998
3.5	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998	. 4998

